How We Do Strong Typed Configuration

TL;DR: I’ve used a form of “strong typed configuration” for the past 5-6 years that I think has some big advantages over the traditional approach to configuration in .Net. I still like this approach and I’m seeing something similar showing up in ASP.Net vNext as well. I’m NOT trying to sell you on any particular tool here, just the technique and concepts.

What’s Wrong with Traditional .Net Configuration?

About a decade ago I came late into a project where we were retrofitting some sort of new security framework onto a very large .Net codebase.* The codebase had no significant automated test coverage, so before we tried to monkey around with its infrastructure, I volunteered to create a set of characterization tests**. My first task was to stand up a big chunk of the application architecture on my own box with a local sql server database. My first and biggest challenge was dealing with all the configuration needs of that particular architecture (I’m wanting to say it was >75 different items in the appSettings collection).

As I recall, the specific problems with configuration were:

  1. It was difficult to easily know what configuration items any subset of the code (assemblies, classes, or subsystems) needed in order to run without painstakingly tracing the code
  2. It was somewhat difficult to understand how items in very large configuration files were consumed by the running code. Better naming conventions probably would have helped.
  3. There was no way to define configuration items on the fly in code. The only option was to change entries in the giant web.config Xml file because the code that used the old System.Configuration namespace “pulled” its configuration items when it needed configuration. What I wanted to do was to “push” configuration to the code to change database connections or file paths in test scenarios or really any time I just needed to repurpose the code. In a more general sense, I called this the Pull, Don’t Push rule in my CodeBetter days.

From that moment on, I’ve been a big advocate of approaches that make it much easier to both trace configuration items to the code that consumes it and also to make application code somehow declare what configuration it needs.


Strong Typed Configuration with “Settings” Classes 

For the past 5-6 years I’ve used an approach where configuration items like file paths, switches, url’s, or connection information is modeled on simple POCO classes that are suffixed with “Settings.” As an example, in the FubuPersistence package we use to integrate RavenDb with FubuMVC, we have a simple class called RavenDbSettings that holds the basic information you would need to connect to a RavenDb database, partially shown below:

    public class RavenDbSettings
        public string DataDirectory { get; set; }
        public bool RunInMemory { get; set; }
        public string Url { get; set; }
        public bool UseEmbeddedHttpServer { get; set; }

        public string ConnectionString { get; set; }

        // And some methods to create in memory datastore's
        // or connect to the specified external datastore

Setting aside how that object is built up for the moment, the DocumentStoreBuilder class that needs the configuration above just gets this object through simple constructor injection like so: new DocumentStoreBuilder(new RavenDbSettings{}, ...);. The advantages of this approach for me are:

  • The consumer of the configuration information is no longer coupled to how that information is resolved or stored in any way. As long as it’s giving the RavenDbSettings object in its constructor, DocumentStoreBuilder can happily go about its business.
  • I’m a big fan of using constructor injection as a way to create traceability and insight into the dependencies of a class, and injecting the configuration makes the dependency on configuration from a class much more transparent than the older “pull” forms of configuration.
  • I think it’s easier to trace back and forth between the configuration items and the code that depends on that configuration. I also feel like it makes the code “declare” what configuration items it needs through the signature of the Settings classes


Serving up the Settings with an IoC Container

I’m sure you’ve already guessed that we just use StructureMap to inject the Settings objects into constructor functions. I know that many of you are going to have a visceral reaction to the usage of an IoC container, and while I actually do respect that opinion, it’s worked out very well for us in practice. Using StructureMap (I think most of the other IoC containers could do this as well) we get a couple big benefits in regards to default configuration and the ability to swap out configuration at runtime (mostly for testing).

Since the Settings classes are generally concrete classes with no argument constructors, StructureMap can happily build them out for you even if StructureMap has no explicit registration for that type. That means that you can forgo any external configuration or StructureMap configuration and your code can still work as long as the default values of the Settings class is useful.  To use the example of RavenDbSettings from the previous section, calling new RavenDbSettings() creates a configuration that will connect to a new embedded RavenDb database that stores its data to the file system in a folder called /data parallel to the project directory (you can see the code here).

The result of the design above is that a FubuMVC/FubuTransportation application was completely connected to a working RavenDb database by simply installing the FubuMVC.RavenDb nuget with zero additional configuration.

I demoed that several times at conferences last year and the audiences seemed to be very unimpressed and disinterested. Either that’s not nearly as impressive as I thought it was, too much magic,  I’m not a good presenter, or they don’t remember what a PITA it used to be just to install and configure everything you needed just to get a blank development database going. I still thought it was cool.

The other huge advantage to using an IoC container to deliver all the configuration to consumers is how easy that makes it to swap out configuration at runtime. Again going to the RavenDbSettings example, we can build out our entire application and swap out the RavenDb connection at will without digging into Xml or Json files of any kind. The main usage has been in testing to get a clean database per test when we do end to end testing, but it’s also been helpful in other ways.


So where does the Setting data come from?

Alright, so the actual data has to come from somewhere outside the codebase at some point (like every developer of my age I have a couple good war stories from development teams hard coding database connection strings directly into compiled code). We generally put the raw data into the normal appSettings key/value pairs with the naming convention “[SettingsClassName].[PropertyName].” The first time a Settings object is needed within StructureMap, we read the raw key/value data from the configuration file and use FubuCore’s model binding support to create the object and do all the type coercion necessary to create the Settings object. An early version of this approach was described by my former colleague Josh Flanagan way back in 2009. The actual mechanics are in the FubuMVC.StructureMap code in the main fubumvc repository.

Some other points:

  • The data source for the model binding in this configuration setup was pluggable, so you could use external files or anything else that could be exposed as key/value pairs. We generally just use the appSettings support now, but on a previous project we were able to centralize the configuration files to a common location for several related processes
  • The model binding is flexible enough to support deep objects, enumerable properties, and just about anything you would need to use in your Settings objects
  • We also supported a model where you could combine key/value information from multiple sources, but layer the data in precedence to enable overrides to the basic configuration. My goal with that support was to avoid making all customer or environment specific configuration be in the form of separate override files without having to duplicate so much boilerplate configuration. In this setup, when the Settings objects were bound to the raw data, profile or environment specific information just got a higher precedence than the default configuration.
  • As of FubuMVC 2.0, if you’re using the StructureMap integration, you no longer have to do anything to setup this settings provider infrastructure. If StructureMap encounters an unknown dependency that’s a concrete type suffixed by “Settings,” it will try to resolve it from the model binding via a custom StructureMap policy.


Programmatic Configuration in FubuMVC 

We also used the “Settings” configuration idea to programmatically specify configuration for features inside the application configuration by applying alterations to a Setting object like this code from one of our active projects:

// Sets up a custom authorization rule on any diagnostic 
// pages
AlterSettings<DiagnosticsSettings>(x => {
	x.AuthorizationRights.Add(new AuthorizationCheckPolicy<InternalUserPolicy>());

// Directs FubuMVC to only look for client assets
// in the /public folder
AlterSettings<AssetSettings>(x =>
	x.Mode = SearchMode.PublicFolderOnly;

The DiagnosticSettings and AssetSettings objects used above are injected into the application container as the application bootstraps, but only after the alterations show above are applied. Behind the scenes, FubuMVC will first resolve the objects using any data found in the appSettings key/value pairs, then apply the alternation overrides in the code above. Using the alteration lambdas instead of just injecting the Settings objects directly allowed us to also embed settings overrides in external plugins, but ensure that the main application overrides always “win” in the case of conflicts.

I’m still happy with how this has turned out in real usage and I’ve since noticed that ASP.Net vNext uses a remarkably similar mechanism to configure options in their IApplicationBuilder scheme (think SetupOptions<MvcOptions>(Action<MvcOptions>)). I’m interested to see if the ASP.Net team will try to exploit that capability to provide much better modularity than the older ASP.Net MVC & Web API frameworks.



Other Links


* That short project was probably one of the strongest teams I’ve ever been a part of in terms of talented individuals, but it also spawned several of my favorite development horror stories (massive stored procedures, non-coding architects, the centralized architect team anti-pattern, harmful coding standards, you name it). In my career I’ve strangely seen little correlation between the technical strength of the development team (beyond basic competence anyway) and the resulting success of the project. Environment, the support or lack thereof from the business, and the simple wisdom of doing the project in the first place seem to be much more important.

** As an aside, that effort to create characterization tests as a crude regression test suite did pay off and we it did find some regression errors after we started making the bigger changes with that test suite. I think the Feathers’ playbook for legacy systems, where I got the inspiration for those characterization tests, is still very relevant some 10+ years later.


5 thoughts on “How We Do Strong Typed Configuration

  1. Pingback: Dew Drop – November 10, 2014 (#1893) | Morning Dew

  2. morrijr


    After quite a lot of googling and putting bits together I finally came up with the gist ( I don’t suppose you would mind taking a look to see if there’s anything I could have improved?

    I would have preferred to restrict my includes to just StructureMap (I work for a bank and they are awfully conservative about pulling new external code) but I could probably swing the FubuCore.

    Anyway, I hope folks find the gist useful!

    Thanks again for writing the fubu and structuremap code!



  3. Pingback: Gutting FubuMVC and Rebooting as “Jasper” | The Shade Tree Developer

  4. Pingback: Using the Bully Algorithm in our Service Bus Applications | The Shade Tree Developer

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s