Adventures in Custom Testing Infrastructure

tl;dr: Sometimes the overhead of writing custom testing infrastructure can lead to easier development

 

Quick Feedback Cycles are Key

It’d be nice if someday I could write all my code perfectly in both structure and function the first time through, but for now I have to rely on feedback mechanisms to tell me when the code isn’t working correctly. That being said, I feel the most productive when I have the tightest feedback cycle between making a change in code and knowing how it’s actually working — and by “quick” I mean both the time it takes for me to setup the feedback cycle and how long the feedback cycle itself takes.

While I definitely like using quick twitch feedback tools like REPL’s or auto-reloading/refreshing web tools like our own fubu run or Mimosa.js’s “watch” command, my primary feedback mechanism for code centric tasks is usually automated tests. That being said, it helps when the tests are mechanically easy to write and run quickly enough that you can get into a nice “red/green/refactor” cycle. For whatever reasons, I’ve hit several problem domains in the last couple years where it was laborious in my time to set up the preconditions and testing inputs and also to measure and assert on the expected outcomes.

 

Maybe Invest in Some Custom Testing Infrastructure?

In some cases I knew right away that testing a feature was going to be a problem, so I started by asking myself “how do I wish I could express the test setup and assertions.” If it seems feasible, I’ll write custom ObjectMother if that’s possible or Test Data Builder‘s for the data setup in more complex cases. I’ve occasionally resorted to building little interpreters that read text and create data structures or files (I do this more often for hierarchical data than anything else I think) or perform assertions on the final state.

You can see an example of this in my old Storyteller2 codebase. Storyteller is a tool for automated acceptance tests and includes a tree view pane in the UI with the inevitable hierarchy of tests organized by suites in an n-deep hierarchy like:

Top Level Suite
  - Suite 1
    -Suite 2
    -Suite 3
      - Test 1
      - Test 2

In the course of building the Storyteller client, I needed to write a series of tests on the tree view state that had to start with a known hierarchy of suites and test files as inputs. After performing actions like filtering or receiving state updates within the UI, I needed to assert on the expected display in this test explorer pane (which tests and suites were visible and were they marked as running, failed, successful, or unknown).

First, to deal with the setup of the hierarchical data I created a little custom class that read flat text data and turned that into the desired hierarchy:

            hierarchy =
                StoryTeller.Testing.DataMother.BuildHierarchy(
                    @"
t1,Success
t2,Failure
t3,Success
s1/t4,Success
s1/t5,Success
s1/t6,Failure
s1/s2/t7,Success
s1/s2/t7,Success
");

Then in the “assertion” part of the test I created a custom specification class that could again read its expectations expressed as flat text and assert that the resulting tree view exactly matched the specified state:

        [Test]
        public void the_child_nodes_are_constructed_with_the_empty_suite()
        {
            var spec =
                new TreeNodeSpecification(
                    @"
suite:Empty
suite:s1
test:s1/t4
test:s1/t5
test:s1/t6
test:t1
test:t2
test:t3
");

            spec.AssertMatch(view.TestNode);
        }

As I recall, writing the simple text parsing classes just to make the expression of the automated tests made it pretty easy to add new behavior quickly. In this case, the time investment upfront for the custom testing infrastructure paid off.

 

FubuMVC’s View Engine Support

A couple months ago I finally got to carve off some time to finally go overhaul the view engine support code in FubuMVC. My main goals were to cut the unnecessarily complex internal code down to something more manageable as a precursor to optimizing both runtime performance and FubuMVC’s time to initialize an application. Since I was about to start monkeying around quite a bit with the internals of code that many of our users depend on, it’s a good thing that we had an existing suite of integration tests that acted as acceptance tests (think layouts, partials, HTML helpers, and our conventional attachment of views to routes) so that in theory I could safely make the restructuring changes without breaking existing behavior.

Going in though, I knew that there was some significant drawbacks to using our existing mechanism for testing the view engine support and I wasn’t looking forward to the inevitable test failures or formulating new integration tests.

 

Problems with the Existing Test Suite

In order to write end to end tests against the view engine support we had been effectively writing little mini FubuMVC applications inside our integration test libraries. Quite naturally, that often meant adding several view files and folders to simulate all the different permutations for layout rendering, using partials, sharing views from external Bottles (a superset of Area’s for you ASP.Net MVC folks), and view profiles (mobile vs. desktop for example). In the test fixtures we would spin up a FubuMVC application with Katana, run HTTP requests, and make assertions against the content that should or should not be present in the HTTP response body.

It wasn’t terrible, but it came with a serious drawbacks:

  1. It wasn’t complete and I’d need to add additional tests
  2. It was expensive in mechanical effort to create those little mini FubuMVC applications that had to be spread over so many different files and even folders
  3. Understanding the tests when something went wrong could be difficult because the expression of the test was effectively split over so many files

 

The New Approach

Before going too far into the code changes against the view engine support, I built a new test harness that would allow me to express in one testing class file:

  1. What all the views and layouts were in the entire system including the content of the views
  2. What the views were in external Bottles loaded into the application
  3. If necessary, configure a complete FubuMVC application if the defaults weren’t sufficient for the test
  4. Declare what content should and should not be rendered when certain routes were executed

The end result was a base class I called ViewIntegrationContext. Mechanically, I made TestFixture classes deriving from this abstract class. In the constructor function of the test fixture classes I would specify the location, content, and view model of any number of Spark or Razor views. When the test fixture class was first executed, it would:

  1. Create a brand new folder using a guid as the name to host the new “application” to avoid collisions with existing test runs (while the new test harness does try to clean up after itself, I’ve learned not to be very trusting of the file system during automated tests)
  2. Write out the Spark and Razor files based on the data specified in the constructor function to the new application folder
  3. Optionally load content Bottles and FubuMVC configurations inside the test harness (ignore that for now if you would, but it was a huge win for me)
  4. Load a new FubuMVC application in memory with the root directory pointing to our new folder for just this test

For each test, the ViewIntegrationContext object uses FubuMVC 2.0’s brand new in memory test harness (somewhat inspired by PlaySpecification from Scala) to execute a “Scenario” where I could declaratively specify what url to render and assert what content should or should not be present in the HTML output.

To make this concrete, the very simplest test to check that FubuMVC really can render a Spark view looks like this:

    [TestFixture]
    public class Simple_rendering : ViewIntegrationContext
    {
        public Simple_rendering()
        {
            SparkView<BreatheViewModel>("Breathe")
                .Write(@"
<p>This is real output</p>
<h2>${Model.Text}</h2>");
        }

        [Test]
        public void can_render()
        {
            Scenario.Get.Input(new AirInputModel{TakeABreath = true});
            Scenario.ContentShouldContain("<h2>Breathe in!</h2>");
        }
    }

    public class AirEndpoint
    {
        public AirViewModel TakeABreath(AirRequest request)
        {
            return new AirViewModel { Text = "Take a {0} breath?".ToFormat(request.Type) };
        }

        public BreatheViewModel get_breathe_TakeABreath(AirInputModel model)
        {
            var result = model.TakeABreath
                ? new BreatheViewModel { Text = "Breathe in!" }
                : new BreatheViewModel { Text = "Exhale!" };

            return result;
        }
    }

    public class AirRequest
    {
        public AirRequest()
        {
            Type = "deep";
        }

        public string Type { get; set; }
    }

    public class AirInputModel
    {
        public bool TakeABreath { get; set; }
    }

    public class AirViewModel
    {
        public string Text { get; set; }
    }

    public class BreatheViewModel : AirViewModel
    {

    }

 

So did this payoff? Heck yeah it did, especially for scenarios where I needed to build out multiple views and layouts. The biggest win for me was that the tests were completely self-contained instead of spread out over so many files and folders. Even better yet, the new in memory Scenario support in FubuMVC made the actual tests very declarative with decently descriptive failure messages.

 

It’s Not All Rainbows and Unicorns

I cherry picked some examples that I felt went well, but there have been some other times when I’ve gone down a rabbit hole of building custom testing infrastructure only to see it be a giant boondoggle. There’s a definite bit of overhead to writing this kind of tooling and you always have to consider whether you’ll save time in the whole compared to writing more crude or repetitive testing code. While I tend to be aggressive about building custom test harnesses, you might accurately call it a speculative exercise and hold off until you feel some pain in your testing.

Moreover, any kind of custom test harness where you decouple the expression of the test (inputs, actions, and assertions) from the actual code that’s being exercised obfuscates your traceability back to the actual code. I’ve seen plenty of cases where the “goodness” of making the expression of the test prettier and more declarative was more than offset by how hard it was to debug test failures because of the extra mental overhead of connecting the meaning of the test to the code that should be implementing it. It’s for that reason that I’ve never been a big fan of most Behavior Driven Development tools for testing that isn’t customer facing.

 

 

 

5 thoughts on “Adventures in Custom Testing Infrastructure

  1. Curious with all of your testing background if you’ve given ApprovalTests a shot.

    I’ve found it to be a good tool to have in the testing belt (so much so that I hacked a nodejs port together), but find myself gravidating to it more and more.

Leave a comment